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Nonrobustness of the two-dimensional turbulent inverse cascade
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The inverse energy cascade in two-dimensional Navier-Stokes turbulence is examined in the quasisteady
regime, with small-scale, band-limited forcing at scale kJZ', with particular attention to the influence of forcing
Reynolds number Re on the energy distribution at large scales. The strength of the inverse energy cascade, or
fraction of energy input that is transferred to larger scales, increases monotonically toward unity with increas-
ing Remkﬁm/ kap, where k., is the maximum resolved wave number. Moreover, as Re increases beyond a
critical value, for which a direct enstrophy cascade to small scales is first realized, the energy spectrum in the
energy-cascading range steepens from a k™3 to k=2 dependence. The steepening is interpreted as the result of

a greater tendency for coherent vortex formation in cases when forcing scales are adequately resolved. In

spectral space, it is associated with nonlocality of the inverse energy transfer.
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The dual cascade of energy and enstrophy in two-
dimensional turbulence is one of the most remarkable fea-
tures of fluid dynamics and has been studied intensively
since the pioneering work of Kraichnan and Batchelor [1,2].
Through advective nonlinearity, energy input at a given scale
is transferred to ever larger scales (the inverse energy cas-
cade) while enstrophy, or mean squared vorticity, is trans-
ferred to ever smaller scales (the direct enstrophy cascade)
where it is eventually dissipated. Assuming constant energy
and enstrophy fluxes € and 7, respectively, in the two inertial
ranges, dimensional analysis predicts that the energy
spectrum takes the form E(k)=Ce**k™" for k<k; and
E(k)=Cn**k™3 for k> ks, where k; is the wave number of the
forcing. Many numerical and experimental studies have pro-
vided support for these scalings in both the inverse [3-9] and
direct [10-13] cascades. For reasons of computational effi-
ciency or experimental limitations, however, most of these
studies have considered the case when only one or other
cascade is present. In this paper, we consider the case when
both inertial ranges are present simultaneously, and examine
more carefully how the energy distribution in the inverse
cascade depends on the presence of the enstrophy cascade.

To produce as wide an inertial range as possible, numeri-
cal simulations of the continuously forced inverse cascade
typically input energy at scales close to the smallest resolved
scale in the model. The ratio ky,,/k; is typically in the range
1-4, where k., is the maximum resolved wave number and
kg is the wave number of the forcing. As a consequence the
scales at which vorticity is created are inherently underre-
solved by the numerical scheme: in the case of the Navier-
Stokes equations the direct enstrophy cascade is eliminated
and forcing is effectively within the dissipation range
[14,15]. When ordinary viscosity is replaced by hyperviscos-
ity, a short direct enstrophy cascade can appear but the flow
at scales kJIl remains poorly resolved [5,16,17].

Figure 1 compares the vorticity field between cases with
kmax/kp=8 and ki, /k;=64, with axes scaled so that k;l is
the same in each picture. The case ky,/ k=64, in which the
forcing is well resolved, shows a rich vorticity structure at
scales well below k;l, with filamentation and the formation
of smaller coherent vortices, in contrast to the viscous ap-
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pearance of the case ky,,/k;=8. At large scales, there is a
noticeable difference in the character of the vortex popula-
tion, with more intense vortices for ky,/k,=64. Statistical
theories of the direct enstrophy cascade have been proposed
that take into account the presence of coherent vorticies
[18-20]. The presence of coherent vorticies at large scales
suggests that similar considerations may apply to the inverse
cascade.

Most studies of the inverse cascade have focused on the
steady state regime where a dissipation mechanism such as
linear friction or scale-selective hypodiffusion removes en-
ergy at large scales. However, large-scale dissipation typi-
cally alters the characteristics of the inverse cascade. By re-
moving energy at all scales, linear friction prevents a
constant energy flux through the inertial range, while hypod-
iffusion is known to lead to a bottleneck effect and the steep-
ening of the energy spectrum at large scales [6,16,21]. To
avoid these complications, we consider here the quasisteady
regime as an approximation of the infinite domain, and con-
sider only times before significant energy has reached the
domain scale.

The quasisteady regime was considered recently by Tran
and Bowman [14], who considered the effect of Reynolds
number Re on the strength » of the inverse cascade, defined
as the fraction of energy input that cascades to larger scales.
Their numerical simulations covered over a decade range of
Re, all for the case ky,,/ky=8, for which r reached a maxi-
mum value of 0.4. Within this range r was found to vary with
log Re, and a robust k'3 energy spectrum was found, even
at very small », providing an explaination for the robustness
of previous simulations of the inverse cascade (above refer-
ences). They also constructed rigorous bounds on the enstro-
phy flux to small scales and showed that no direct cascade is
possible unless r~ 1. As they concluded, open questions re-
main as to the dependence of r at larger Re, and at what Re
a direct cascade is realized. Here, we present a series of
numerical simulations to address these questions.

We consider the two-dimensional incompressible Navier-
Stokes equations in a periodic domain with a small-scale
stochastic forcing f:
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FIG. 1. Snapshot of the vorticity field {(x,y) at quasiequilibrium
for kyax/ky=(a) 8 and (b) 64 (where k,,,=N/3). The spatial domain
shown is |x,y|<21m/ks, so the forcing scale appears the same in
each panel.

dow+J(Yw)=vAw+f (1)

where w=Ay is the vorticity, ¢ is the stream function,
J(¢, )= w,— w,4,, and v is the kinematic viscosity. The

forcing f is & correlated in time and satisfies (f(k)f(k)*)

=F(k)/mk, where f is the Fourier transform of £ and where
the forcing spectrum F(k)=¢ for [k—k]|<Ak=2 and F=0
otherwise. We solve (1) using a standard pseudospectral
model with full two-thirds spectral dealiasing, so k., =N/3
where N is the grid resolution in x and y. A fourth-order
Runga-Kutta scheme is used for the time stepping, with forc-
ing and dissipation terms treated implicitly. Multiplying (1)
by ¢ and integrating yields the energy equation

E=e-2vZ (2)

where =1 [dx|Vyi>=[5dk E(k) is the total energy, with
spectrum E(k), and Z =% Jdx w?=[{dk Z(k) is the enstrophy.
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FIG. 2. Energy and enstrophy flux for k. /k=4,8,16 (k;=85,
N=3kpa=1024,2048,4096). Inset: kp,y/ ky=4 on rescaled axes.

We consider the quasistationary case where JE/dt=0 in the
inertial range k, <k <kg, where k,, is the wave number of the
energy peak. Following [14], we define the strength of the
inverse cascade as r=(e—2vZ)/e and consider the depen-
dence of r on Re=(2m)2(kuuy/ k)22 vy, where vo=kp, v
is the diffusion rate at the smallest resolved wave number
knax- Here, we extend the range of Re by allowing the ratio
kmax/ ks to increase. Because we consider simulations with
different ks, we consider forcing with a constant rate of en-
strophy input, 7= ke, which allows a constant value of vy to
be used at different k; and kp,,; thus in the simulations de-
scribed next, Re o (kyy/ k).

Figure 2 shows the energy and enstrophy fluxes for three
simulations with kp,,./k;=4,8,16. The strength of the in-
verse cascade can be estimated from the graph as minus the
level of the plateau of II, at k<<k;; the energy dissipation
ep=2vZ is the difference between this level and the jump in
I, at kj. For ky,/k;=4, the inverse cascade is exceedingly
weak, with r~ 107*. The vorticity field in physical space (not
shown) is dominated by diffuse vortices at the scale k}l;
there is no enstrophy cascade through filamentation, nor ac-
cumulation of energy at large scales visible in the physical
fields. Despite the weakness of the inverse cascade, the en-
ergy spectrum nevertheless exhibits a clear k=3 shape (Fig.
3, dashed line) consistent with the analysis of [14]. As
kinax! kg increases, so too does r. At ky,/ k=38, corresponding
to the upper panel in Fig. 1, r=0.3, the inverse cascade is
still weak and there is no direct cascade: the shape of the
energy spectrum at k>k, remains steeper than k= [15].
Again E~k™ at k<k;. Note from Figs. 2 and 3 that the
energy has not yet reached the largest (domain) scales. Spec-
tra plotted at different times indicate similar levels of E(k) in
the range k, <k <k

A strong inverse cascade emerges for kp,/k=16, for
which r=0.7. At this point the spectral shape for k>k; is
shallower than k= (Fig. 3) indicating the onset of a direct
cascade, although it can be seen in Fig. 2 that an inertial
range with constant enstrophy flux is not fully developed.
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FIG. 3. Energy spectrum for the cases shown in Fig. 2. Inset:
k?E(k) for the case ky,y/k=16 at three separate times.

What is more interesting, however, is the change in the be-
havior of the inverse cascade at k<kf, where it is seen that
the energy spectrum has steepened to a k=2 dependence. Note
that the k=2 dependence is not a transient feature, but persists
as the energy front approaches the domain scale (see the
compensated spectra in the inset to Fig. 3).

For ky./k;>16 the energy spectrum in the enstrophy
cascading range shallows further, while the spectrum in the
energy cascading range remains near k2. The case K,/ ky
=64 shown in Fig. 1 has E(k)~k™ 36 at k>k; and
E(k)~k™? at k<k; (not shown), although here k;=21 means
the inverse cascade is less than a decade long and close to the
domain scale. Nevertheless, the energy and enstrophy fluxes
are reasonably constant over these ranges, and close to unity.

To verify that the steeper slope is not a finite size effect,
Fig. 4 shows a higher-resolution case with N=8192 and
kf— 170 (Kpyax/ ky=16). Again the k=2 slope is present. There
is a decade between k, and the domain scale and the energy
at the domain scale is three orders of magnitude lower than
the peak. As before, E(k) ~k™* in the direct cascade. The
energy spectra compensated by k* and k* shown in the inset
on a log-linear scale highlight the k> dependence.

Using hyperviscosity of the form vA” in place of vA in
(1), where y>1 allows higher Re to be reached. Repeating
the case kp./kp=64 with y=4 results in r=~1 with
E~k3? at k>kf, while E~k™? persists at k<k; (not
shown). There is no indication that the direct cascade has
converged and previous studies indicate a k= dependence
(with possible logarithmic correction) is attained at higher
Kmax/ kg [10-12]; Lindborg and Alvelius obtained a clean k™
dependence using y=2 and forcing at k;=7, giving k.. / k¢
=1365/7=195 [10].

Results from a number of different cases are summarized
in Fig. 5. The filled circles correspond to the cases shown in
Figs. 2 and 3, and the open circles correspond to a similar
series but with forcing at k=21. There is good agreement
between the two series at a given Re (cases with ky,/k/
=8,16) in terms of both r and the slopes of the inertial
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FIG. 4. Energy spectrum for kp,,/k;=16 but with k;=170 and
N=8192. Inset: k2E(k) (solid) and k3E(k) (dashed).

ranges. The hyperdiffusion case with k. /k;=64 and y=4
shows a perfect (r=1) inverse cascade. For that case Re has
been estimated as Re=(27)*(kny/k)*(Z2/1)"?, which
appears reasonable based on extrapolation of the Navier-
Stokes cases and suggests that the use of hyperdiffusion here
is roughly equivalent to a doubling of the effective resolu-
tion. Most previous studies of the inverse cascade have used
v>1 but with k. /k K in the range 1-4 [5,6,16,17]. These
studies obtained a k= dependence in the inverse cascade as
well as a direct cascade, in apparent contradiction to the
present results. The direct cascade in those cases, however, is
not physically realized due to numerical truncation, since at
low k. /ky, filamentation and the development of coherent
structures are unresolved, regardless of the order of diffu-
sion. Previous studies with larger k ../ kf show steeper spec-
tra: Fig. 2(a) of [9] is almost exactly k=2, while Fig. 4 of [22]
is near k=22, Note that a dual cascade may be possible when
frictional effects allow a steady state [23].

On dimensional grounds, a k2 energy spectrum should
scale as E(k) ~ &"?5'/%k=2, where the constant of proportion-
ality has here been estimated to be order unity. Here, a small
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FIG. 5. Inverse cascade strength, r=(e—2vZ)/e against Re for
4 <lkpay/ky<64 (512<N<4096). Numbers indicate the slopes of
inverse and direct cascades. Open circles, k,=21; filled circles,
ky=85; diamond represents a hyperdiffusion case with k=21 and
N=4096, for which r is defined as the average Il, in the inverse
cascading regime normalized by e.
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enstrophy flux 7 to large scales is necessary since the enstro-
phy spectrum Z(k) ~ k" extends to smaller k with increasing
time (k, decreases). This is observed in our large ky,y/k¢
simulations. Physically, a negative enstrophy flux at k <k, is
consistent with an inverse cascade mediated by vortex
merger in which peak vorticity is quasiconserved. In spectral
space, this is related to the nonlocality of the inverse cascade,
which was shown by [24] to involve energy transfer from
wave numbers k> k. As argued by Borue [16], resolution of
forcing scales is important in determining the vorticity dis-
tribution at larger scales. In the simulations presented here,
kmax/ k=16 results in a more intermittent vorticity field, and
strong departures from a Gaussian distribution, as shown in
Fig. 6. The broad tails are the result of coherent vortex struc-
tures, which dominate the energy and enstrophy at large
kmax/ ky. Decomposing the vorticity field into background and
coherent components following [16], reveals that the back-
ground vorticity retains a k=3 energy spectrum.

In conclusion, in considering the resolution of forcing
scales in two-dimensional Navier-Stoles turbulence, we have
shown the existence of a transition around ky,,./k;=16,
where (i) the direct cascade first emerges [i.e., E(k)>k™]
and (ii) the energy spectrum in the inverse energy cascade
steepens to a k> dependence. At larger K,/ kg, the strength
of the inverse cascade approaches r=1, the energy spectrum
in the direct cascade shallows toward k=3, while the spectrum
in the indirect cascade remains near k2. The steepening in
the inverse cascade is associated with the dominance of co-
herent vortices, which are able to form more readily when
forcing scales are correctly resolved. Thus, the form of the
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FIG. 6. Vorticity probability distribution function, normalized
by standard deviation, for cases kpyq./k;=4,8,16,32,64: k=85
(solid), 21, (dotted), and 170 (bold).

inverse energy cascade depends on whether it appears in iso-
lation or concurrent with a direct enstrophy cascade.
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